Hood Canal Dissolved Oxygen Program Key Messages

The Problem

1. Hood Canal’s dissolved oxygen concentrations are at their lowest in recorded history. Aquatic life needs oxygen to breathe, just as people do.

2. In recent years the low dissolved oxygen condition has become more widespread. The area of low dissolved oxygen is getting larger, spreading northwards. The periods of low dissolved oxygen last longer.

3. Hood Canal suffered significant fish kills during both 2002 and 2003. These events affected thousands of juvenile perch (June 2003) and numerous fish, octopi and sea cucumbers (fall 2002 and 2003).

Sources of the Problem

1. Many natural factors may contribute to the low dissolved oxygen problem: slow water circulation and mixing, the incoming ocean water quality, changes in the weather, high growth of algae, loadings of carbon and nitrogen, and changes in the native marine life composition.

2. People may be affecting the dissolved oxygen concentration in several ways, including altering the river flows, landscapes, and marine life, adding excess nutrients to the waters that can fuel extra algae growth, adding extra carbon to the ecosystem, and influencing climate change.

The Solutions

1. The decrease in oxygen in Hood Canal took many years to be apparent and it may take that long or longer for it to recover. The Hood Canal low dissolved oxygen problem is still under scientific study. We don’t yet completely understand the whole of the problem, so we can’t devise the whole solution – but it’s important to get started now.

2. Twenty-eight entities, including local, state and federal agencies, tribal governments, non–profit organizations and universities, have come together to form the Hood Canal Low Dissolved Oxygen Program (HCDOP).

3. The goal of the HCDOP is to determine the sources of the low dissolved oxygen in Hood Canal, the effect on marine life, and to work with local, state, federal, and tribal government policy makers to develop potential corrective actions that will help restore and maintain a level of dissolved oxygen that will not stress the marine life.